Categories
Uncategorized

Cisco 7965 IP phones and TP-Link Gigabit Smart Switches

I had some interesting times trying to get my Cisco 7965 working with a TP-Link SG2210P swtich.

The way I want this to work is have all ports on the switch configured as access ports on my normal VLAN, but have the phone automatically run on a different VLAN, and be able to use the pass-through port on the phone for another device on the normal VLAN (the way they would normally be configured in an all-cisco environment). I also didn’t want non-phone devices to be able to access the voice VLAN.

At first all seemed to work fine, I configured the OUI filter entry to match the mac address prefix of the phone (the default Cisco rule it comes with doesn’t cover the phone I have). I also configured the switch-wide voice vlan settings, and set the “voice vlan mode” of all the access ports to “auto”.

However, I later noticed that the phone was trying to get a DHCP address on my normal VLAN instead of the voice one. I think that what had happened is that I’d switched on support for LLDP and LLDP-MED, and now the phone was being told by the switch to use the voice vlan, and was also being told that the voice vlan wasn’t present on the port, thus confusing the phone thoroughly. After lots of messing around I have come to the following conclusion:

  • Do enable LLDP and LLDP-MED
  • Set the “voice vlan mode” to “manual” for the access ports.
  • Explicitly allow the voice vlan (tagged) on the access ports.
  • Use the “voice vlan security” feature to prevent non-phone devices getting onto the voice vlan (this uses the OUI filter entries again).

The end result should look like this:

sw1-office#show run int g 1/0/5
interface gigabitEthernet 1/0/5
  switchport general allowed vlan <your data vlan id> untagged
  switchport general allowed vlan <your voice vlan id> tagged
  switchport pvid <your data vlan id>
  no switchport general allowed vlan 1
  switchport voice vlan mode manual
  switchport voice vlan security
  lldp med-status
Categories
Uncategorized

A minor case mod for the CoolerMaster “HAF Stacker 915R”

Recently I bought a CoolerMaster “HAF Stacker 915R” case for a new mini-ITX server I’m building, based around the ASRock AM1H-ITX board. I bought mostly because it was cheap, but also because it claimed you could mount a lot of fans (6x 120mm or 4x 140mm) on the side panels. What I didn’t realize until I was installing drives in it was that you can’t have the side panel fans and the drive cage installed at the same time:

No room on this side
No room on this side either

As delivered, the case has the drive bay mounted at the front cooled by a 92mm fan in the front panel – but that didn’t work for me, partly because the fan cable for the front fan doesn’t reach back as far as the motherboard! In addition, the motherboard I am using has the option of being driven by a 19V external DC power supply, at which point it supplies power to the drives from a SATA power socket on the board – and that cable couldn’t reach the drive bays either.

So I decided that instead of mounting the drives across the case, I’d rotate the bay 90% and run them front-to-back. 4 small holes later..

4 small holes drilled

Now there is room for the fan at the side:

Plenty of room!

You can still get the drives in and out of the bays without having to remove it from the case:

The tray fits between the front panel and the cage

There’s plenty of clearance for the fan:

There is only just clearance between the front edge of the motherboard and the rear of the drive. Note that because I’m using the DC input on this board, I don’t need to use the ATX power connector, so potentially fouling that isn’t an issue for this build.

I’m now much more confident that the drives will get the cooling they need.

Categories
Uncategorized

Building root filesystems for the Raspberry Pi

Rasbian on the Raspberry Pi is great, but the official image is large and includes all sorts of stuff I don’t need (my Pis don’t generally have screens as I use them for playing music, or being GPS NTP time servers, or collecting data on my power usage – not things which need, for example, a screen and a gui!). I did manage to cobble together a base install using the Debian installer on a Pi, but it took a loooong time, and cloning this image every time I want to do a new one is a bit of a pain; for one thing the image is quite old now so apt-get has to update a lot of packages to bring it up to current, and for another the machines all get the same ssh keys, and the filesystems all have the same ‘unique’ IDs (which tends to confuse things if you simultaneously plug 2 of the resulting SD cards into the same PC!).

So I’ve been mucking around with a better way to generate basic Rasbian installs for the Pi. I’ve discovered that the combination of multistrap and qemu-static allows the building of a complete up-to-date installation tree on my x86-64 Ubuntu desktop in a tiny fraction of the time it would take to do the same thing on a Pi. For my base install (which is indeed very basic) my machine takes about 5 minutes (with the packages files already in my apt-cacher-ng cache). Sometimes the longest step is copying all the data to the SD card!

One of the nice things about using multistrap to do this is the ability to make cascaded configurations – so I can define a base configuration which works for me, and then have other configurations which build on top of it for specific applications. If I make improvements to the base, then regenerating one of the cascaded configurations will incorporate the improvements automatically. It also means I don’t have to remember or document what I did to the base image to get the application-specific image, because it is all there in the configuration file and associated scripts.

The resulting trees are still proper Rasbian installs and can be updated and managed with apt-get etc just like a normal install.

I’ve put a small collection of multistrap configuration bits and attached shell scripts up on github if anyone else wants to have a play with it. It includes one configuration file for a base install, and one for a customized install including MPD. There’s a handful of shell scripts which do most of the work beyond getting the packages extracted – these will almost certainly need customizing for your environment. You will definitely want to read the README. Oh, and you’ll need a Debian-derived (eg Ubuntu) machine to do the work, since multistrap relies on apt to do all the package work.

Categories
Uncategorized

South Australia is on a really daft timezone

There’s a rather nice article about timezones and how wrong they can be, which shows clearly just how broken the South Australian timezone (+9:30) is. If you look at the beautiful map, you’ll notice that all of South Australia (and Northern Territory if it comes to that) is in red; that is, behind the timezone. At 15° of longitude per hour (360° in 24 hours), the +9:30 timezone would be centred at 142.5° E. South Australia extends from 129° E to 141° E (see wikipedia).

If you look closely at the map, you’ll see part of Indonesia (West Papua) which is on the +9:00 timezone. You can see that the white coloured section (the centre of the timezone, 135° E) is roughly in line with the centre of South Australia. Surely this would make more sense? All that broken software which assumes that timezone offsets from GMT are always a whole number of hours would just work!!

(I recently came across broken software which did in fact have non-integer timezones available. Well, sort of. They had a special case for India on +5:30, but that was all. ARRGGHH!).

Categories
electronics sensors Uncategorized

Finalized currentcost interface for rPi

Having breadboarded it a couple of days ago, I’ve now finalized the serial interface between the Raspberry Pi and the Currentcost cc128, using some stripboard, dual header socket, CD4049, and a couple of bits of wire. Pretty straightforward; I removed a couple of pins from the header socket so I didn’t have to bridge from the outside of the socket back into the middle of the board, and made sure that all unused gates have their outputs floating and their inputs tied to something (in one case I’ve actually fed the input of a spare gate from the output fed to the rPi RX line; yes it will slightly increase the current consumption (as I’ve got an extra gate switching instead of staying static), but the effect will be tiny and it was easier than cutting the trace and fixing it all up with wires). The stripboard could have had the outer two rows of holes trimmed off but it doesn’t interfere with anything so I didn’t bother. The LEGO case has been improved now that I don’t have wires out the side (and has a transparent block near the LEDs on the rPi – works very well).

Parts
Note the two missing pins in the header. There's a missing cut on the stripboard, and one cut in the wrong place.
Top view
Top view
Bottom view
Bottom view, with missing cuts added and wrong cut bridged; yes my soldering is awful.
In situ
With cc128 meter and rj45 connection
Boxed and ready to go
Boxed and ready to go

 

Machine is now under the bed driving the (USB) bedroom speakers using shairport and feeding power data to my main server over MQTT.

Categories
Uncategorized

Woot! cc128 -> rPi -> mqtt!

Got my 2nd raspberry pi today. Coinciding with the discovery that pin 10 on the arduino board I was going to use to submit data from the currentcost cc128 meter to mqtt seems to have a duff pin 10 (which makes it rather hard to use the ethernet shield), I decided to see if I could instead have the 3.3v RS232 from the cc128 drive the 3.3v RS232 on the raspberry pi (through 2 gates of a CD4049 running from the rPi 3.3V rail to protect the rPi if something went wrong). After finding an old floppy cable to rip apart and bodging together a LEGO case (based on the design by Biz but hacked because of the  over-sized connector I’ve used for the i/o port), it was a matter of “apt-get install mosquitto-clients python-serial”, copy the script over from the server currently doing the job (which has a long unreliable USB cable to the cc128), hack it to send the data to the server rather than localhost, and voila! works first time.

Disturbingly this actually costs less than an arduino + ethernet shield. The form factor is a little more awkward though (ports at both ends of the board, no screw holes), so getting it into a case along with other bits and pieces will be somewhat more awkward; ideally it would be good to have a tall case with enough room in the upper part to hold a pcb for additional components.

rPi + cc128

Categories
Uncategorized

So now I have a blog.

I’m not sure if this is a good idea, but hey.